Singular value correlation functions for products of Wishart random matrices
نویسندگان
چکیده
We consider the product ofM quadratic random matrices with complex elements and no further symmetry, where all matrix elements of each factor have a Gaussian distribution. This generalises the classical Wishart-Laguerre Gaussian Unitary Ensemble with M = 1. In this paper we first compute the joint probability distribution for the singular values of the product matrix when the matrix sizeN and the numberM are fixed but arbitrary. This leads to a determinantal point process which can be realised in two different ways. First, it can be written as a one-matrix singular value model with a non-standard Jacobian, or second, for M ≥ 2, as a two-matrix singular value model with a set of auxiliary singular values and a weight proportional to the Meijer G-function. For both formulations we determine all singular value correlation functions in terms of the kernels of biorthogonal polynomials which we explicitly construct. They are given in terms of hypergeometric and Meijer G-functions, generalising the Laguerre polynomials for M = 1. Our investigation was motivated from applications in telecommunication of multi-layered scattering MIMO channels. We present the ergodic mutual information for finite-N for such a channel model with M − 1 layers of scatterers as an example. PACS: 02.10.Yn, 02.30.Cj, 02.30.Ik, 02.50.Sk, 84.40.Ba, 84.40.Ua MSC: 15B52, 33C20, 33C45, 94Axx
منابع مشابه
Complex singular Wishart matrices and applications∗
In this paper, complex singular Wishart matrices and their applications are investigated. In particular, a volume element on the space of positive semidefinite m×m complex matrices of rank n < m is introduced and some transformation properties are established. The Jacobian for the change of variables in the singular value decomposition of general m × n complex matrices is derived. Then the dens...
متن کاملStatistical Analysis of the Smallest Singular Value in MIMO Transmission Systems
— Multi-Input Multi-Output (MIMO) transmission has been a topic of great interest for a few years due to the huge spectral ef ciency gain it can provide over rich scattering transmission channels, such as indoor (e.g. wireless local area networks) or urban outdoor (e.g. mobile wireless communications). MIMO transmission channels are usually modelled by random matrices. In this paper, we use res...
متن کاملSingular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملDuality of Real and Quaternionic Random Matrices
We show that quaternionic Gaussian random variables satisfy a generalization of the Wick formula for computing the expected value of products in terms of a family of graphical enumeration problems. When applied to the quaternionic Wigner and Wishart families of random matrices the result gives the duality between moments of these families and the corresponding real Wigner and Wishart families.
متن کاملOn the Largest Singular Values of Random Matrices with Independent Cauchy Entries
We apply the method of determinants to study the distribution of the largest singular values of large real rectangular random matrices with independent Cauchy entries. We show that statistical properties of the largest singular values are different from the Tracy-Widom law. Among other corollaries of our method we show an interesting connection between the mathematical expectations of the deter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1303.5694 شماره
صفحات -
تاریخ انتشار 2013